Relative entropy, and naive discriminative learning

Harald Baayen

in collaboration with

Petar Milin, Peter Hendrix, Dusica Filipovic-Markovic, and Marco Marelli

San Diego, January 15-16, 2011

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

overview

- ► Milin, Filipovic-Durdevic & Moscoso del Prado (2009)
- ► Experiment 1: replication with primed self-paced reading
- Modeling with naive discriminative learning
- **•** Experiment 2: relative entropy in syntax (lex. dec.)
- Experiment 3: relative entropy in syntax (eye-tracking)
- ► Relative entropy, random intercepts, and stem support

Milin et al. 2009

- {p}: the probability distribution of exponents of a given lemma
- {q}: the probability distribution of exponents across all lemmata in an inflectional class
- relative entropy $RE = \sum_i p_i \log_2(p_i/q_i)$
- ▶ greater relative entropy, longer lexical decision latencies

Replication study using primed self-paced reading

• weighted relative entropy:
$$\sum_{i} \frac{p_i w_i}{\sum_{i} p_i w_i} \log_2 \frac{p_i}{q_i}$$

• weights
$$w_i = \frac{f(target_i)}{f(prime_i)}$$

- ► a greater WRE predicts longer latencies
- but interactions with masculine gender and nominative case

Interactions with weighted relative entropy

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Modeling (weighted) relative entropy effects

sources of inspiration

 recent work by Michael Ramscar on the Rescorla-Wagner equations in language acquisition

- old work by Fermin Moscoso del Prado Martin (PhD thesis, chapter 10)
- discussions with Jim Blevins

Models of morphological processing: the 'standard' model (Rastle, Davis)

Our approach: amorphous morphology

- ◆ □ ▶ ◆ 個 ▶ ◆ 臣 ▶ ◆ 臣 ● の Q @

letters and letter pairs as cues for meanings

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

legal scrabble words beginning with qa

letters and letter pairs as cues for meanings

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- legal scrabble words beginning with qa
 - qaid (Muslim tribal chief)

- letters and letter pairs as cues for meanings
- legal scrabble words beginning with qa
 - qaid (Muslim tribal chief)
 - qanat (gently sloping underground tunnel for irrigation)

- letters and letter pairs as cues for meanings
- legal scrabble words beginning with qa
 - qaid (Muslim tribal chief)
 - qanat (gently sloping underground tunnel for irrigation)

qat (leaf of the shrub Catha edulis)

- letters and letter pairs as cues for meanings
- legal scrabble words beginning with qa
 - qaid (Muslim tribal chief)
 - qanat (gently sloping underground tunnel for irrigation)

- qat (leaf of the shrub Catha edulis)
- our model is based on a generalization of this idea

naive discriminative learning

- Links between orthography (cues) and semantics (outcomes) are established through discriminative learning
 - Rescorla-Wagner equations for discriminative learning (Rescorla & Wagner, 1972)
 - Equilibrium equations for the Rescorla-Wagner equations (Danks, 2003)
- The activation for a given meaning outcome is the sum of all associative links between the (active) input letters and letter pairs and that meaning

Rescorla-Wagner equations

$$V_i^{t+1} = V_i^t + \Delta V_i^t$$

with

$$\Delta V_i^t = \begin{cases} 0 & \text{if } \text{ABSENT}(C_i, t) \\ \alpha_i \beta_1 \left(\lambda - \sum_{\text{PRESENT}(C_j, t)} V_j \right) & \text{if } \text{PRESENT}(C_j, t) \& \text{PRESENT}(O, t) \\ \alpha_i \beta_2 \left(0 - \sum_{\text{PRESENT}(C_j, t)} V_j \right) & \text{if } \text{PRESENT}(C_j, t) \& \text{ABSENT}(O, t) \end{cases}$$

- if a cue is reliable, it's connection strength will increase
- ▶ if a cue is unreliable, it's connection strength will decrease
- if many cues are relevant simultaneously, the contribution of a single cue from the set will be small

Example lexicon

Word	Frequency	Lexical Meaning	Number
hand	10	HAND	
hand <mark>s</mark>	20	HAND	PLURAL
land	8	LAND	
land <mark>s</mark>	3	LAND	PLURAL
and	35	AND	
<mark>s</mark> ad	18	SAD	
as	35	AS	
lad	102	LAD	
lad <mark>s</mark>	54	LAD	PLURAL
la <mark>ss</mark>	134	LASS	

The Rescorla-Wagner equations applied

▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 ト ● 臣 = • • ○ � ○

a shortcut straight to the adult stable state

equilibrium equations (Danks) when the system is in a stable state, the connection weights to a given meaning can be estimated by solving a set of linear equations

($\Pr(C_0 C_0)$ $\Pr(C_0 C_1)$	$\frac{\Pr(C_1 C_0)}{\Pr(C_1 C_1)}$	 	$\Pr(C_n C_0) \\ \Pr(C_n C_1)$	$\begin{pmatrix} V_0 \\ V_1 \end{pmatrix}$	=	$\left(\begin{array}{c} \Pr(O C_0)\\ \Pr(O C_1) \end{array}\right)$	
	$\Pr(C_0 C_n)$	 Pr(<i>C</i> ₁ <i>C</i> _n)	· · · · · · ·	$\left(C_n C_n \right)$	$\begin{pmatrix} \cdots \\ V_n \end{pmatrix}$)	$(Pr(O C_n))$	

 V_i : association strength of *i*-th cue C_i to outcome O

the association strengths V_j optimize the conditional outcomes given the conditional co-occurrence probabilities characterizing the input space

from weights to meaning activations

the activation a_i of meaning i is the sum of its incoming connection strengths

$$a_i = \sum_j V_{ji}$$

- the greater the meaning activation, the shorter the response latencies
 - simplest case:

 $\mathsf{RTsim}_i \propto -a_i$

 a log transformation may be required to remove the right skew from the distribution of simulated RTs: RTsim_i ∝ log(1/a_i)

the naive discriminative reader

- basic engine is parameter-free, and driven completely and only by the language input
- the model is computationally undemanding: building the weight matrix from a lexicon of 11 million phrases takes 10 minutes on my desktop

implementation in R

from weights to meaning activations

- for Serbian case-inflected nouns, sum over lexical meanings and grammatical meanings
- ► for priming, we use Ratcliff-McKoon's compound cue theory:

$$S = \sum_{i=1}^{10} (a_{Pi}^{w} \cdot a_{Ti}^{1-w}) \quad (0 \le w \le 0.5)$$
 (1)

- this introduces a free parameter for the prime duration
- we also use one free parameter to model the time required to plan and execute a second fixation for longer words

Observed and simulated latencies (r = 0.24)

æ

Activation of case meanings

▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー のへ(で)

Summary Experiment 1

- relative entropy effects persist in sentential reading
- they are modified, but not destroyed by priming
- the interaction with masculine gender follows from the distributional properties of the lexical input
- the interaction with nominative case remains unaccounted for (functions and meanings?)
- frequency effects for complex words and paradigmatic effects can arise without representations for complex words or representational structures for paradigms

Experiment 2: Relative entropy in syntax

phrase	phrasal	phrasal	preposition	prepositional
	frequency	probability		frequency
on a plant	28608	0.279	on	177908042
in a plant	52579	0.513	in	253850053
under a plant	7346	0.072	under	10746880
above a plant	0	0.000	above	2517797
through a plant	0	0.000	through	3632886
behind a plant	760	0.007	behind	3979162
into a plant	13289	0.130	into	25279478

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

40 spatial prepositions

prepositional relative entropy

training data

- the model is trained on 11,172,554 two and three-word phrases from the British National Corpus, comprising 26,441,155 word tokens
- phrases have as last word one of 24710 monomorphemic words, or any bimorphemic compounds, derived and inflected words containing one of the 24710 monomorphemic words

constructions sampled

PREPOSITION + ARTICLE + NOUNPREPOSITION + POSSESSIVE PRON. + NOUNPREPOSITION + X + NOUNPREPOSITION + NOUNX's + NOUNARTICLE + NOUNARTICLE + X + NOUNPossessive Pronoun + Noun ARTICLE + X'S + NOUNPRONOUN + AUXILIARY + VERBPRONOUN + VERBAUXILIARY + VERBARTICLE + ADJECTIVE

about a ballet about her actions about actual costs about achievements protege's abilities a box the abdominal appendages their abbots the accountant's bill they are arrested he achieves is abandoning the acute

processing of monomorphemic words

- stimuli: 1289 monomorphemic nouns
- lexical decision latencies from the English Lexicon Project
- simulated lexical decision latencies
- predictors
 - Family Size
 - Inflectional Entropy
 - Written Frequency
 - Number of Morphologically Complex Synonyms

- Neighborhood Density
- Mean Bigram Frequency
- Noun-Verb Ratio
- Length
- Prepositional Relative Entropy

results

correlation for the observed and simulated response latencies: r = 0.55, t(1287) = 23.83, p < 0.001

r = 0.7, p = 0.04

coencients

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Summary Experiment 2

- lexical paradigmatic effects (family size, inflectional entropy) modeled successfully without representations for inflections and derivations
- the phrasal paradigmatic effect is also modelled correctly, without representations for phrases
- the paradigmatic distributional properties of a word can affect single-noun reading

Other results obtained

- phrasal frequency effects
- phonaestheme effects
- corn-corner effects (pseudoderived words)
- family size effects, whole-word frequency effects, and base frequency effects for complex words
- the interaction between first-constituent frequency and whole-word frequeny in compound words (Kuperman et al., 2009)

interaction of regularity by tense in English

intermezzo: strong connectivity

mediated priming (Balota & Lorch, 1986)

- ▶ $cat \rightarrow cab \rightarrow taxi$
- lion \rightarrow tiger \rightarrow stripes
- priming chains for compounds?
 - ► tea trolley → trolley bus
 - tea trolley \rightarrow trolley bus \rightarrow bus stop

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ● の Q (2)

- 2

is strong connectivity advantageous?

is strong connectivity advantageous?

- possibly yes more integrated learning
- possibly no might cause confusion secondary family size

this kind of connectivity should be beyond what the naive discriminative reader can handle — but it isn't

lexical connectivity

Experiment 3: More on relative entropy in syntax

- reading aloud combined with eye tracking
- first experiment: reading aloud single words (e.g., *table*)
- second experiment: reading aloud prepositional phrases (e.g., on the + table)

Experiment 3: single words, total fixation time

relative entropy (indefinite article) $\langle \Box \rangle \langle \Box \rangle \langle$

Experiment 3: phrases, total fixation time

relative entropy (definite article)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

Naive discriminative and mixed-effects classifiers

Word	Frequency	Case	Lemma	Relative	Ranef	Stem Support	Stem Support	Exponent
Form				Entropy		Nominative	Genitive	Support
AQEa	10	nom	A	0.134	-1.121	-0.014	0.260	0.353
AQEi	20	gen	A	0.134	-1.121	-0.014	0.260	0.740
AQEu	30	acc	A	0.134	-1.121	-0.014	0.260	0.595
AQEa	40	acc	A	0.134	-1.121	-0.014	0.260	0.127
ABCa	15	nom	В	0.053	-0.676	0.037	0.260	0.353
ABCi	22	gen	В	0.053	-0.676	0.037	0.260	0.740
ABCu	28	acc	В	0.053	-0.676	0.037	0.260	0.595
ABCa	35	acc	В	0.053	-0.676	0.037	0.260	0.127
APQa	20	nom	С	0.010	-0.288	0.087	0.260	0.353
APQi	24	gen	С	0.010	-0.288	0.087	0.260	0.740
APQu	26	acc	С	0.010	-0.288	0.087	0.260	0.595
APQa	30	acc	С	0.010	-0.288	0.087	0.260	0.127
ZPEa	30	nom	D	0.007	0.243	0.162	0.260	0.353
ZPEi	26	gen	D	0.007	0.243	0.162	0.260	0.740
ZPEu	24	acc	D	0.007	0.243	0.162	0.260	0.595
ZPEa	25	acc	D	0.007	0.243	0.162	0.260	0.127
EPBa	35	nom	E	0.039	0.583	0.210	0.260	0.353
EPBi	28	gen	E	0.039	0.583	0.210	0.260	0.740
EPBu	22	acc	E	0.039	0.583	0.210	0.260	0.595
EPBa	20	acc	Е	0.039	0.583	0.210	0.260	0.127
DPBa	40	nom	F	0.139	1.269	0.289	0.260	0.353
DPBi	30	gen	F	0.139	1.269	0.289	0.260	0.740
DPBu	20	acc	F	0.139	1.269	0.289	0.260	0.595
DPBa	10	acc	F	0.139	1.269	0.289	0.260	0.127

stem support, random intercepts, and unsigned relative entropy

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

the main trend depends on the balance

・ロト ・ 雪 ト ・ ヨ ト

3

c(10,20,30,40)*20, c(15,24,32,40)*10, c(20,28,33,40)*3, c(25,32,35,40)*2, c(30,34,37,40)*1, c(35,37,38,40)*1

trend depends on position prototype

c(10,20,30,40)*1, c(15,24,32,40)*1, c(20,28,33,40)*2, c(25,32,35,40)*3, c(30,34,37,40)*10, c(35,37,38,40)*20

trend depends on position prototype

- in a complex system, the same measure can have slopes with opposite signs depending on the distributional properties of the language input
- this may help explain the changes in sign of RE in the eye-tracking+naming study
- our distributional measures provide partial and potentially distorting views on the complex structure arising from simple principles of learning

Discussion

- Our model shows morphological effects in the absence of morphological representations, including paradigmatic effects
- This is consistent with a-morphous views on morphology (e.g.: Anderson, 1992; Blevins, 2003)
- The model is a classifier (for the dative alternation, it outperforms mixed models)
 - relative entropies are functionally equivalent to unsigned random intercepts in a mixed-effects model
 - relative entropies capture the total association strengths from stems to grammatical meanings

Discussion

- Our model is similar in spirit to the reading part of the triangle model (Seidenberg & Gonnermann, 2000)
- Both models map orthography onto semantics without morphological representations
- Our computational engine, however, is much simpler than that of the triangle model: we do not assume hidden layers or use back-propagation to estimate connection weights.
- Furthermore, our model is more radically a-morphous in that there is no hidden layer that can covertly represent morphology.

Discussion

- Our model is also similar in spirit to the Bayesian Reader (Norris, 2006)
- Both models map forms onto 'central' representations without intercession by morphemes
- Our computational engine, however, is much simpler than that of the Bayesian reader: the complexity of the Bayesian reader is quadratic in the number of orthographic 'units', whereas our model is linear in the number of elementary meanings

Summary

- Discriminative learning provides a good fit to a wide range of experimental data
- The model is trained on realistic input, it is as sparse as possible in its number of representations, and it is computationally efficient
- The model does not make an a priori distinction between phrasal learning and morphological learning, and therefore can straightforwardly handle gradient phenomena at the interface of morphology and syntax (cf. construction morphology, Booij 2010)